INTEGRALGEOMETRIC PROPERTIES OF CAPACITIES

BY PERTTI MATTILA¹

ABSTRACT. Let m and n be positive integers, 0 < m < n, and C_K and C_H the usual potential-theoretic capacities on R^n corresponding to lower semicontinuous kernels K and H on $R^n \times R^n$ with $H(x,y) = K(x,y)|x-y|^{n-m} > 1$ for |x-y| < 1. We consider relations between the capacities $C_K(E)$ and $C_H(E \cap A)$ when $E \subset R^n$ and A varies over the m-dimensional affine subspaces of R^n . For example, we prove that if E is compact, $C_K(E) < c \int C_H(E \cap A) d\lambda_{n,m} A$ where $\lambda_{n,m}$ is a rigidly invariant measure and c is a positive constant depending only on n and m.

1. Introduction. Suppose that E is a Borel set in R^n with $0 < \mathcal{K}^s(E) < \infty$, where \mathcal{K}^s is the s-dimensional Hausdorff measure. It was shown in [MP] that if m is an integer, 0 < m < n, then, in the case s < m, the Hausdorff dimension $\dim p(E)$ equals s for almost all orthogonal projections $p: R^n \to R^m$, and, in the case s > n - m, $\dim(E \cap V) = s + m - n$ with $\mathcal{K}^{s+m-n}(E \cap V) < \infty$ for almost all m planes V through almost all points of E. There are examples which show that in general the statements $\dim p(E) = s$ and $\dim(E \cap V) = s + m - n$ cannot be replaced by $\mathcal{K}^s(p(E)) > 0$ and $\mathcal{K}^{s+m-n}(E \cap V) > 0$, respectively; see [M, 5.6 and 6.6]. However, if one uses capacities in place of Hausdorff measures, one can say more. If C_s is the Riesz capacity defined via the kernel $|x - y|^{-s}$, then, in the case 0 < s < m, $C_s(E) > 0$ implies $C_s(p(E)) > 0$ for almost all orthogonal projections $p: R^n \to R^m$. Moreover, if F is compact, then

$$\int C_s(p(F))^{-1} d\theta_{n,m}^* p \leq c C_s(F)^{-1}$$

where $\theta_{n,m}^*$ is the orthogonally invariant measure on the space of all orthogonal projections $R^n \to R^m$ and c is a constant depending on n, m and s. These results were proved in [MP, 5.1-2], and Kaufman also considered capacities of projections in [K]. In 4.11 we show that also

$$C_s(F) \leq c \int C_s(p(F)) d\theta_{n,m}^* p.$$

The main portion of this paper is devoted to the study of the capacities of the intersections of E with m planes. We shall show that if s > n - m and $C_s(E) > 0$, then $C_{s+m-n}(E \cap V) > 0$ for almost all m planes V through C_s almost all points of E, and if F is compact

$$C_s(F) \leqslant c \int C_{s+m-n}(F \cap V) d\lambda_{n,m} V,$$

Received by the editors August 1, 1980.

AMS (MOS) subject classifications (1970). Primary 28A12, 31B15; Secondary 28A75.

¹Supported in part by National Science Foundation Grant MCS77-18723(02).

where $\lambda_{n,m}$ is the rigidly invariant measure on the space of all *m*-dimensional affine subspaces of R^n and c depends only on n and m (see 4.6-8). In fact, we prove more general results by replacing the kernels $|x-y|^{-s}$ and $|x-y|^{-(s+m-n)}$ by general lower semicontinuous kernels K(x,y) and $K(x,y)|x-y|^{n-m}$, respectively.

To prove these results we need to define the slices of a Radon measure μ on m planes and to derive some integral relations between these slices and μ . This will be done in §3.

In §5 we make some remarks on the structure of purely unrectifiable subsets of R^n . For example, it follows from Theorem 5.1 that if $E \subset R^n$ is purely $(\mathfrak{R}^{n-1}, n-1)$ unrectifiable with $\mathfrak{R}^{n-1}(E) < \infty$, then from C_{n-1}^* almost all points of $R^n E$ projects radially into a set of \mathfrak{R}^{n-1} measure zero, where C_{n-1}^* is the outer capacity corresponding to C_{n-1} . This generalizes a result of Marstrand [M, §8].

2. Preliminaries.

2.1. Notation and terminology. We shall use the notation and terminology of [F]. In the whole paper m and n will be integers with 0 < m < n. Radon measure always means a nonnegative (outer) Radon measure. If μ is a Radon measure on R^n , so are $\mu \perp A : B \mapsto \mu(A \cap B)$ for any $A \subset R^n$ and, if the support of μ , spt μ , is compact, $f_{\#} \mu : B \mapsto \mu(f^{-1}(B))$ for any continuous $f: R^n \to R^n$ [F, 2.2.17]. If μ is absolutely continuous with respect to ν , we denote $\mu \ll \nu$.

We let G(n, m) be the Grassmannian manifold of *m*-dimensional linear subspaces of \mathbb{R}^n . There is a unique Radon measure $\gamma_{n,m}$ on G(n, m) which has a total mass one and which is invariant under orthogonal transformations of \mathbb{R}^n [F, 2.7.16(6)]. The following lemma was proved in [MP, 2.6]:

2.2. LEMMA. There is a constant c depending only on n and m such that for $x \in R^n$ and $\delta > 0$,

$$\gamma_{n,m}\{V: \operatorname{dist}(x, V) \leq \delta\} \leq c\delta^{n-m}|x|^{m-n}.$$

2.3. The space of affine subspaces. We shall denote by A(n, m) the space of all m-dimensional affine subspaces of R^n . Each $A \in A(n, m)$ has a unique representation

$$A = V_a, \quad V \in G(n, m), a \in V^{\perp},$$

where V^{\perp} is the orthogonal complement of V and $V_a = V + \{a\}$ is the m plane through a parallel to V. We let $\lambda_{n,m}$ be the standard Radon measure on A(n,m) which is invariant under the isometries of R^n . It follows from [F, 2.7.16(7)] and Fubini's theorem [F, 2.6.2] that

$$\int f \, d\lambda_{n,m} = \int \int_{V^{\perp}} f(V_a) \, d \, \mathfrak{R}^{n-m} a \, d\gamma_{n,m} V$$

for any nonnegative Borel function f on A(n, m).

2.4. Differentiation of measures. We review the facts from the theory of the relative differentiation of measures which will be needed in the sequel. Let $V \in G(n, k)$ and let μ be a Radon measure on R^n . We define for $x \in V$ the lower

and upper derivatives of $\mu \vdash V$ with respect to $\mathcal{H} \vdash V$ by

$$\underline{D}(\mu, V, x) = \lim_{r \downarrow 0} \inf_{\alpha(k)^{-1}} r^{-k} \mu(B(x, r) \cap V),$$

$$\overline{D}(\mu, V, x) = \limsup_{r\downarrow 0} \alpha(k)^{-1} r^{-k} \mu(B(x, r) \cap V),$$

where B(x, r) is the closed ball with centre x and radius r and $\alpha(k)$ is the Lebesgue measure of the unit ball in R^k . If these two limits agree, we define the derivative

$$D(\mu, V, x) = \lim_{r \to 0} \alpha(k)^{-1} r^{-k} \mu(B(x, r) \cap V).$$

It follows from [F, 2.9.5] combined with [F, 2.8.7-8] that

$$D(\mu, V, x) < \infty$$
 for \mathcal{K}^k a.a. $x \in V$,

and from [F, 2.9.7] that for any \mathfrak{R}^k measurable set $B \subset V$,

$$\int_{B} D(\mu, V, x) d\mathcal{H}^{k} x \leq \mu(B).$$

The equality holds if $\mu \ll \mathcal{K}^k \sqcup V$, and then it follows $D(\mu, V, x) > 0$ for μ a.a. $x \in V$. Moreover, using [F, 2.9.15] one sees that $\mu \sqcup V \ll \mathcal{K}^k \sqcup V$ if and only if

$$D(\mu, V, x) < \infty$$
 for μ a.a. $x \in V$.

2.5. Some Borel functions. For $\emptyset \neq E \subset \mathbb{R}^n$ and $\delta > 0$, we set

$$E(\delta) = \{x: \operatorname{dist}(x, E) \leq \delta\}.$$

Suppose that μ is a Radon measure on R^n with compact support, $W \in G(n, k)$, f is a nonnegative Borel function on R^n and α is a real number. Then the following functions are Borel functions:

$$x \mapsto \underline{D}(\mu, W, x), \quad x \in W, \qquad x \mapsto \overline{D}(\mu, W, x), \quad x \in W,$$

$$A \mapsto \liminf_{\delta \downarrow 0} \delta^{\alpha} \int_{A(\delta)} f \, d\mu, \qquad A \in A(n, m),$$

$$A \mapsto \limsup_{\delta \downarrow 0} \delta^{\alpha} \int_{A(\delta)} f \, d\mu, \qquad A \in A(n, m),$$

$$(x, V) \mapsto \liminf_{\delta \downarrow 0} \delta^{\alpha} \int_{V_{x}(\delta)} f \, d\mu, \qquad (x, V) \in \mathbb{R}^{n} \times G(n, m),$$

$$(x, V) \mapsto \limsup_{\delta \downarrow 0} \delta^{\alpha} \int_{V_{x}(\delta)} f \, d\mu, \qquad (x, V) \in \mathbb{R}^{n} \times G(n, m).$$

The proofs of these facts are rather standard, and we briefly consider only

$$F(A) = \liminf_{\delta \downarrow 0} \delta^{\alpha} \int_{A(\delta)} f \, d\mu.$$

The others can be dealt with similarly. First one verifies

$$F(A) = \liminf_{\delta \downarrow 0} \delta^{\alpha} \int_{A(\delta)^{0}} f \, d\mu$$

where $A(\delta)^0$ is the interior of $A(\delta)$. Using

$$\int_{A(\delta)^0} f \, d\mu = \lim_{\epsilon \uparrow \delta} \int_{A(\epsilon)^0} f \, d\mu,$$

and the compactness of spt μ , one then shows that $A \mapsto \int_{A(\delta)^0} f \, d\mu$ is lower semicontinuous. Finally it follows from the facts that δ^{α} is continuous and $\int_{A(\delta)^0} f \, d\mu$ is nondecreasing with respect to δ that δ may be restricted to run through the positive rationals. This implies that F is a Borel function.

- 3. Slicing of measures. We shall use the theory of differentiation of measures to define the slices of a Radon measure of R^n on affine subspaces of R^n . Our method is somewhat similar to those which Federer [F, 4.3] and Almgren [A, I.3] have used to slice currents and varifolds.
- 3.1. Definition of slices. Let μ be a Radon measure on R^n with compact support. For any nonnegative Borel function f on R^n with $\int f d\mu < \infty$ we define a Radon measure ν_f by

$$\nu_f(B) = \int_R f \, d\mu.$$

Let $V \in G(n, m)$ and let $\pi_V \colon R^n \to V^\perp$ be the orthogonal projection. First we fix $\varphi \in C^+(R^n)$, the space of nonnegative continuous functions on R^n . Using 2.4 we differentiate $\pi_{V\#}\nu_{\varpi}$ with respect to $\mathcal{K}^{n-m} \sqcup V^\perp$ and obtain the existence of

$$\mu_{V,a}(\varphi) = D(\pi_{V \# \nu_{\varphi}}, V^{\perp}, a) = \lim_{\delta \downarrow 0} \alpha (n - m)^{-1} \delta^{m-n} \int_{V_{-}(\delta)} \varphi \ d\mu < \infty \quad (3.2)$$

for \mathcal{H}^{n-m} a.a. $x \in V^{\perp}$.

Let then D be a countable subset of $C^+(R^n)$ which is dense in $C^+(R^n)$ with respect to the uniform convergence. Then for \mathcal{H}^{n-m} a.a. $a \in V^{\perp}$, $\mu_{V,a}(\varphi)$ is defined for all $\varphi \in D$, and it follows immediately that for every such a, $\mu_{V,a}(\varphi)$ is defined by (3.2) for all $\varphi \in C^+(R^n)$. Thus for \mathcal{H}^{n-m} a.a. $a \in V^{\perp}$ we may use Riesz's representation theorem [F, 2.5.13–14] to extend $\mu_{V,a}$ to a Radon measure on R^n . Whenever $\mu_{V,a}$ is defined, we set

$$\mu_{V,x} = \mu_{V,a}$$
 for $x \in V_a$ and $\mu_A = \mu_{V,a}$ for $A = V_a \in A(n, m)$.

- 3.3. Lemma. (1) spt $\mu_A \subset A \cap \text{spt } \mu$ whenever μ_A is defined.
- (2) The set P of those $A \in A(n, m)$ for which μ_A is defined is a Borel set and $\lambda_{n,m}(A(n, m) \sim P) = 0$.
- (3) The set Q of all pairs $(x, V) \in R^n \times G(n, m)$ for which $\mu_{V,x}$ is defined is a Borel set. If $\pi_{V\#} \mu \ll \Re^{n-m} \sqcup V^{\perp}$ for $\gamma_{n,m}$ a.a. $V \in G(n, m)$, then $\mu \times \gamma_{n,m}(R^n \times G(n, m) \sim Q) = 0$ and $\mu_{V,x}(R^n) > 0$ for $\mu \times \gamma_{n,m}$ a.a. $(x, V) \in R^n \times G(n, m)$.

PROOF. (1) is obvious by (3.2). To prove (2) let D be the countable dense subset of $C^+(R^n)$ which was used in 3.1. For $\varphi \in D$ the functions

$$\underline{D}_{\varphi} \colon A \mapsto \liminf_{\delta \downarrow 0} \alpha (n-m)^{-1} \delta^{m-n} \int_{A(\delta)} \varphi \ d\mu,$$

$$\overline{D}_{\varphi} : A \mapsto \limsup_{\delta \downarrow 0} \alpha (n - m)^{-1} \delta^{m-n} \int_{A(\delta)} \varphi \ d\mu$$

are Borel functions on A(n, m) by 2.5. Hence

$$P = \bigcap_{\varphi \in D} \left\{ A : \underline{D}_{\varphi}(A) = \overline{D}_{\varphi}(A) < \infty \right\}$$

is a Borel set. Since $\mathfrak{R}^{n-m}\{a\in V^{\perp}\colon V_a\notin P\}=0$ for all $V\in G(n,m)$, we obtain $\lambda_{n,m}(A(n,m)\sim P)=0$.

To prove (3) we observe that the mapping $F: (x, V) \mapsto V_{\pi_{V}(x)}$ of $\mathbb{R}^{n} \times G(n, m)$ onto A(n, m) is continuous and $Q = F^{-1}(P)$. Thus Q is a Borel set.

Suppose then that for $\gamma_{n,m}$ a.a. $V \in G(n, m)$, $\pi_{V\#} \mu \ll \mathcal{H}^{n-m} \cup V^{\perp}$, which means that $\mu(E) = 0$ whenever $\mathcal{H}^{n-m}(\pi_{V}(E)) = 0$. Since $\lambda_{n,m}(A(n, m) \sim P) = 0$, we have

$$\mathcal{K}^{n-m} \left(\pi_V \left\{ x \colon V_{\pi_V(x)} \in A(n, m) \sim P \right\} \right)$$
$$= \mathcal{K}^{n-m} \left\{ a \in V^{\perp} \colon V_a \in A(n, m) \sim P \right\} = 0$$

for $\gamma_{n,m}$ a.a. $V \in G(n, m)$. Hence, by the absolute continuity,

$$\mu\{x: (x, V) \in R^n \times G(n, m) \sim Q\} = \mu\{x: V_{\pi_{\nu}(x)} \in A(n, m) \sim P\} = 0$$

for $\gamma_{n,m}$ a.a. $V \in G(n, m)$, and Fubini's theorem yields

$$\mu \times \gamma_{n,m}(R^n \times G(n,m) \sim Q) = 0.$$

Finally, if $\pi_{V\#} \mu \ll \Re^{n-m} \sqcup V^{\perp}$, we have by 2.4, $\mu_{V,a}(R^n) = D(\pi_{V\#} \mu, V^{\perp}, a) > 0$ for $\pi_{V\#} \mu$ a.a. $a \in V^{\perp}$, and then $\mu_{V,x}(R^n) > 0$ for μ a.a. $x \in R^n$. Fubini's theorem implies $\mu_{V,x}(R^n) > 0$ for $\mu \times \gamma_{n,m}$ a.a. $(x, V) \in R^n \times G(n, m)$.

- 3.4. LEMMA. Let f be a nonnegative Borel function on R^n with $\int f d\mu < \infty$ and let $V \in G(n, m)$.
 - (1) For \mathcal{K}^{n-m} a.a. $a \in V^{\perp}$,

$$\int f d\mu_{V,a} = \lim_{\delta \downarrow 0} \alpha (n-m)^{-1} \delta^{m-n} \int_{V_a(\delta)} f d\mu.$$

- (2) The function $a \mapsto \int f d\mu_{V,a}$ is \mathcal{K}^{n-m} measurable on V^{\perp} .
- $(3) \int_{V^{\perp}} \int f d\mu_{V,a} d \mathcal{H}^{n-m} a \leq \int f d\mu.$
- (4) If $\pi_{V\#} \mu \ll \mathfrak{R}^{n-m} \sqcup V^{\perp}$, then

$$\int_{V^{\perp}} \int f d\mu_{V,a} d\mathcal{H}^{n-m} a = \int f d\mu.$$

(5) The function $A \mapsto \int f d\mu_A$ is $\lambda_{n,m}$ measurable on A(n, m).

PROOF. The set $P_V = \{a \in V^{\perp} : V_a \in P\}$ is a Borel set by Lemma 3.3(2) and $\Re^{n-m}(V^{\perp} \sim P_V) = 0$ by 3.1.

Let g be a nonnegative lower semicontinuous function on R^n . Then there is a nondecreasing sequence (φ_i) of continuous functions with $\lim \varphi_i = g$. For $a \in P_V$ by (3.2),

$$\int g \ d\mu_{V,a} = \lim_{i \to \infty} \int \varphi_i \ d\mu_{V,a} = \lim_{i \to \infty} \lim_{\delta \downarrow 0} \alpha (n-m)^{-1} \delta^{m-n} \int_{V_{\sigma}(\delta)} \varphi_i \ d\mu.$$

Therefore $a \mapsto \int g \ d\mu_{V,a}$ is a Borel function by 2.5, and using the monotone convergence theorem and 2.4 we get

$$\begin{split} \int_{V^{\perp}} \int g \ d\mu_{V,a} \ d\mathcal{H}^{n-m} a &= \int_{V^{\perp}} \lim_{i \to \infty} \ D(\pi_{V\#} \nu_{\mathbf{q}_i}, V^{\perp}, a) \ d\mathcal{H}^{n-m} a \\ &= \lim_{i \to \infty} \int_{V^{\perp}} D(\pi_{V\#} \nu_{\mathbf{q}_i}, V^{\perp}, a) \ d\mathcal{H}^{n-m} a \leq \lim_{i \to \infty} \pi_{V\#} \nu_{\mathbf{q}_i}(V^{\perp}) \\ &= \lim_{i \to \infty} \int \varphi_i \ d\mu = \int g \ d\mu. \end{split}$$

Since $\int f d\mu < \infty$ there are sequences (ψ_i) of continuous functions and (g_i) of lower semicontinuous functions such that

$$|f - \psi_i| \le g_i$$
 and $\lim_{i \to \infty} \int g_i d\mu = 0$.

Then $\int_{V^{\perp}} \int g_i d\mu_{V,a} d\mathcal{H}^{n-m} a \leq \int g_i d\mu \to 0$; hence for a subsequence, which we may assume to be the whole sequence,

$$\lim_{i \to \infty} \int g_i \, d\mu_{V,a} = 0 \quad \text{for } \mathcal{H}^{n-m} \text{ a.a. } a \in V^{\perp}.$$
 (6)

We also have by 2.5 and 2.4,

$$\int \lim_{\delta \downarrow 0} \alpha (n-m)^{-1} \delta^{m-n} \int_{V_a(\delta)} |f-\psi_i| \ d\mu \ d \mathcal{K}^{n-m} a$$

$$\leq \int D(\pi_{V\#} \nu_{g_i}, \ V^\perp, \ a) \ d \mathcal{K}^{n-m} a \leq \int g_i \ d\mu \to 0.$$

Hence going once more to a subsequence without changing the notation, we may assume

$$\lim_{i\to\infty} \lim_{\delta\downarrow 0} \alpha(n-m)^{-1} \delta^{m-n} \int_{V_a(\delta)} |f-\psi_i| d\mu = 0 \quad \text{for } \Re^{n-m} \text{ a.a. } a \in V^{\perp}.$$
 (7)

Let R be the set of those $a \in P_{\nu}$ for which (6) and (7) hold and for which

$$\lim_{\delta\downarrow 0} \alpha(n-m)^{-1}\delta^{m-n}\int_{V_a(\delta)} f\,d\mu = D(\pi_{V\#}\nu_f, V^\perp, a) < \infty.$$

Then by 2.5 and 2.4, R is a Borel set, $\mathcal{K}^{n-m}(V^{\perp} \sim R) = 0$ and for $a \in R$ and for all i,

$$\lim_{\delta \downarrow 0} \alpha (n - m)^{-1} \delta^{m-n} \int_{V_a(\delta)} f \, d\mu = \lim_{\delta \downarrow 0} \alpha (n - m)^{-1} \delta^{m-n} \int_{V_a(\delta)} \psi_i \, d\mu$$

$$+ \lim_{\delta \downarrow 0} \alpha (n - m)^{-1} \delta^{m-n} \int_{V_a(\delta)} (f - \psi_i) \, d\mu$$

$$= \int \psi_i \, d\mu_{V,a} + \lim_{\delta \downarrow 0} \alpha (n - m)^{-1} \delta^{m-n} \int_{V_a(\delta)} (f - \psi_i) \, d\mu$$

$$\to \int f \, d\mu_{V,a} \quad \text{as } i \to \infty.$$

Hence for $a \in R$,

$$\lim_{\delta \downarrow 0} \alpha (n-m)^{-1} \delta^{m-n} \int_{V_a(\delta)} f \, d\mu = \int f \, d\mu_{V,a}.$$

The left-hand side is a Borel function by 2.5, whence $a \mapsto \int f d\mu_{V,a}$ is \mathcal{H}^{n-m} measurable. This proves (1) and (2). (3) and (4) follow from (1) and 2.4 when applied to the measure $\pi_{V\#}\nu_f$.

Essentially the same argument which was used to prove (1) gives for $\lambda_{n,m}$ a.a. $A \in A(n, m)$,

$$\int f d\mu_A = \lim_{\delta \downarrow 0} \alpha (n - m)^{-1} \delta^{m-n} \int_{A(\delta)} f d\mu.$$

The only difference is that one now performs integrations also over G(n, m). (5) follows then from 2.5.

The following lemma, which is a generalization of [M, Lemma 13], gives a sufficient condition for $\pi_{V\#}\mu$ to be absolutely continuous with respect to $\Im^{n-m} \sqcup V^{\perp}$ for $\gamma_{n,m}$ a.a. $V \in G(n,m)$. An immediate corollary is the fact that if $C_{n-m}(E) > 0$ or dim E > n-m then $\Im^{n-m}(\pi_V(E)) > 0$ for $\gamma_{n,m}$ a.a. $V \in G(n,m)$. More general results involving multiplicities of the projections were derived in [MP, §4].

3.5. LEMMA. If $\int |x-y|^{m-n} d\mu y < \infty$ for μ a.a. $x \in \mathbb{R}^n$, then $\pi_{V\#} \mu \ll \Re^{n-m} \sqcup V^{\perp}$ for $\gamma_{n,m}$ a.a. $V \in G(n,m)$.

PROOF. By Fatou's lemma, Fubini's theorem and Lemma 2.2, we obtain for μ a.a. $x \in \mathbb{R}^n$,

$$\int \underline{D}(\pi_{V\#} \mu, V^{\perp}, \pi_{V}(x)) d\gamma_{n,m} V$$

$$\leq \liminf_{\delta \downarrow 0} \alpha(n-m)^{-1} \delta^{m-n} \int \mu \{ y : \operatorname{dist}(y, V_{x}) \leq \delta \} d\gamma_{n,m} V$$

$$= \liminf_{\delta \downarrow 0} \alpha(n-m)^{-1} \delta^{m-n} \int \gamma_{n,m} \{ V : \operatorname{dist}(y, V_{x}) \leq \delta \} d\mu y$$

$$\leq c\alpha(n-m)^{-1} \int |x-y|^{m-n} d\mu y < \infty.$$

Hence for $\gamma_{n,m}$ a.a. $V \in G(n, m)$,

$$\underline{\underline{D}}(\pi_{V\#}\mu, V^{\perp}, \pi_{V}(x)) < \infty \text{ for } \mu \text{ a.a. } x \in R^{n},$$

and therefore by the definition of $\pi_{\nu \pm} \mu$,

$$\underline{\underline{D}}(\pi_{V\#} \mu, V^{\perp}, a) < \infty \text{ for } \pi_{V\#} \mu \text{ a.a. } a \in V^{\perp},$$

which according to 2.4 means $\pi_{V\#} \mu \ll \Re^{n-m} \sqcup V^{\perp}$.

Observe in the following lemma that the μ exceptional set is independent of the Borel function f. This will be needed later on.

3.6. Lemma. Suppose that $\int |x-y|^{m-n} d\mu y < \infty$ for μ a.a. $x \in \mathbb{R}^n$. There are a constant c depending only on n and m, and $B \subset \mathbb{R}^n$ such that $\mu(\mathbb{R}^n \sim B) = 0$ and that for every nonnegative Borel function f on \mathbb{R}^n ,

$$\iint \int f \, d\mu_{V,x} \, d\gamma_{n,m} V \leqslant c \int f(y) |x - y|^{m-n} \, d\mu y \quad \text{for } x \in B.$$

PROOF. We reduce the proof to the case where f is continuous by first approximating f from above with lower semicontinuous functions and then approximating these lower semicontinuous functions from below by continuous functions. When f is continuous, (3.2) holds with φ replaced by f and V_a replaced by V_x for $(x, V) \in Q$, where Q is the Borel set of 3.3(3). Let B be the set of all $x \in R^n$ for which $\gamma_{n,m}\{V: (x, V) \in R^n \times G(n, m) \sim Q\} = 0$. Since

$$\mu \times \gamma_{n,m}(R^n \times G(n,m) \sim Q) = 0$$

by Lemmas 3.5 and 3.3(3), Fubini's theorem gives $\mu(R^n \sim B) = 0$. For $x \in B$ we use (3.2), Fatou's Lemma, Fubini's theorem and Lemma 2.2, and let g_{δ} be the characteristic function of the set $\{(y, V): \operatorname{dist}(y, V_x) \leq \delta\}$ to obtain

$$\iint f \, d\mu_{V,x} \, d\gamma_{n,m} V \leq \liminf_{\delta \downarrow 0} \alpha (n-m)^{-1} \delta^{m-n} \int \int_{V_x(\delta)} f \, d\mu \, d\gamma_{n,m} V$$

$$= \liminf_{\delta \downarrow 0} \alpha (n-m)^{-1} \delta^{m-n} \int \int f(y) g_{\delta}(y, V) \, d\mu y \, d\gamma_{n,m} V$$

$$= \liminf_{\delta \downarrow 0} \alpha (n-m)^{-1} \delta^{m-n} \int f(y) \gamma_{n,m} \{ V : \operatorname{dist}(y, V_x) \leq \delta \} \, d\mu y$$

$$\leq \alpha (n-m)^{-1} c \int f(y) |x-y|^{m-n} \, d\mu y.$$

4. Energies and capacities.

4.1. Definitions. In the following K will be a nonnegative lower semicontinuous function on $R^n \times R^n$ (which may have value ∞). The K-energy of a Radon measure μ on R^n is

$$I_K(\mu) = \int \int K(x,y) d\mu x d\mu y.$$

The K-capacity of a compact set $F \subset \mathbb{R}^n$ is defined by

$$C_K(F) = \sup I_K(\mu)^{-1}$$

where the supremum is taken over all Radon measures μ on R^n with spt $\mu \subset F$ and $\mu(F) = 1$. For arbitrary $E \subset R^n$ we set

$$C_K(E) = \sup\{C_K(F): F \text{ compact } \subset E\}.$$

If for some s > 0, $K(x, y) = |x - y|^{-s}$ for $x \neq y$ and $K(x, x) = \infty$, we denote C_s instead of C_K .

Let $P \subset A(n, m)$ and $Q \subset R^n \times G(n, m)$ be the Borel sets where μ_A and $\mu_{V,x}$ are defined, respectively (recall Lemma 3.3).

4.2. Lemma. Let μ be a Radon measure on R^n with compact support. Then the functions

$$A \mapsto I_K(\mu_A), \quad A \in P,$$

$$(x, V) \mapsto I_K(\mu_{V,x}), \quad (x, V) \in Q,$$

$$(x, V) \mapsto \int K(x, y) d\mu_{V,x} y, \quad (x, V) \in Q,$$

are Borel functions.

PROOF. By the monotone convergence theorem we reduce the proof to the case where K is continuous with compact support. It follows from the Stone-Weierstrass approximation theorem that there is a sequence (K_i) converging uniformly to K such that each K_i is a finite sum of functions of the form $(x, y) \mapsto \varphi(x)\psi(y)$ where φ and ψ are continuous functions on R^n with compact support. Since $\mu_A(R^n) < \infty$ for $A \in P$ and $\mu_{V,x}(R^n) < \infty$ for $(x, V) \in Q$, uniform convergence implies convergence for μ_A - and $\mu_{V,x}$ -integrals. Hence we may assume that

$$K(x, y) = \varphi(x)\psi(y)$$
 for $x, y \in \mathbb{R}^n$

where φ and ψ are continuous. Then

$$I_K(\mu_A) = \int \varphi \ d\mu_A \int \psi \ d\mu_A \quad \text{for } A \in P,$$

$$I_K(\mu_{V,x}) = \int \varphi \ d\mu_{V,x} \int \psi \ d\mu_{V,x} \quad \text{for } (x, V) \in Q,$$

and

$$\int K(x,y) d\mu_{V,x} y = \varphi(x) \int \psi d\mu_{V,x} \quad \text{for } (x,V) \in Q,$$

and the result follows from (3.2) and 2.5.

4.3. LEMMA. Let f be a real-valued function on $R^k \times R^1$ such that the function $x \mapsto f(x, t)$ is \Re^k measurable for $t \in R^1$ and the function $t \mapsto f(x, t)$ is nonincreasing and left continuous for $x \in R^k$. Then f is \Re^{k+1} measurable.

PROOF. Let Q be the set of rational numbers. For $\alpha \in R^1$ and $r \in Q$, set

$$E_\alpha = \big\{ (x,t) \colon f(x,t) \geq \alpha \big\}, \qquad E_{\alpha,r} = \big\{ x \colon f(x,r) \geq \alpha \big\}.$$

Then $E_{\alpha,r}$ is \mathcal{K}^k measurable and

$$E_{\alpha} = \bigcap_{i=1}^{\infty} \bigcup_{r \in Q} \{(x, t) : x \in E_{\alpha, r}\} \cap \{(x, t) : r < t < r + 1/i\}.$$

Hence E_{α} is \mathcal{H}^{k+1} measurable.

From now on we shall assume that for some positive constant b,

$$K(x,y) \ge b|x-y|^{m-n}$$
 for $(x,y) \in R^n \times R^n, |x-y| \le 1.$ (4.4)

We define another lower semicontinuous kernel H by

$$H(x, y) = K(x, y)|x - y|^{n-m} \text{ for } x \neq y,$$

$$H(x, x) = \lim_{\substack{(y, z) \to (x, x) \\ y \neq z}} H(y, z).$$

We first derive an integralgeometric inequality for energy-integrals.

4.5. THEOREM. There is a constant c depending only on n and m such that for any Radon measure μ on \mathbb{R}^n with compact support,

$$\int I_H(\mu_A) \ d\lambda_{n,m} A \leq c I_K(\mu).$$

PROOF. We may assume $I_K(\mu) < \infty$. Then by (4.4), $\int |x-y|^{m-n} d\mu y < \infty$ for μ a.a. $x \in \mathbb{R}^n$.

Let P be the Borel set of Lemma 3.3(2). Then $\lambda_{n,m}(A(n,m) \sim P) = 0$ and $A \mapsto I_H(\mu_A)$ is a Borel function on P by Lemma 4.2. We shall use the formula

$$\int f \, d\nu = \int_0^\infty \nu \{x : f(x) \ge t\} \, dt$$

for the ν -integral of a nonnegative ν measurable function f. We denote for $0 \le t < \infty$, $V \in G(n, m)$,

$$E_{V,t} = \left\{ x \in R^n : \int H(x,y) \ d\mu_{V,x} y > t \right\}.$$

Then $E_{V,t}$ is a Borel set by Lemma 4.2. Recalling that spt $\mu_{V,a} \subset V_a$ and $\mu_{V,x} = \mu_{V,a}$ if $x \in V_a$, we have for $V_a \in P$,

$$I_{H}(\mu_{V,a}) = \int_{0}^{\infty} \mu_{V,a} \left\{ x: \int H(x,y) d\mu_{V,a} y > t \right\} dt$$
$$= \int_{0}^{\infty} \mu_{V,a} \left\{ x: \int H(x,y) d\mu_{V,x} y > t \right\} dt$$
$$= \int_{0}^{\infty} \mu_{V,a} (E_{V,t}) dt.$$

For $\gamma_{n,m}$ a.a. $V \in G(n, m)$ the function $a \mapsto \mu_{V,a}(E_{V,t})$ is \mathcal{K}^{n-m} measurable on V^{\perp} for $0 \le t < \infty$ by Lemma 3.4(2), and for such V we may apply Lemma 4.3 with $f(a, t) = \mu_{V,a}(E_{V,t})$. Integrating over V^{\perp} we get by Fubini's theorem and Lemma 3.4(3),

$$\begin{split} \int_{V^{\perp}} I_{H}(\mu_{V,a}) \ d \, \mathfrak{R}^{n-m} a &= \int_{V^{\perp}} \int_{0}^{\infty} \mu_{V,a}(E_{V,t}) \, dt \ d \, \mathfrak{R}^{n-m} a \\ &= \int_{0}^{\infty} \int_{V^{\perp}} \mu_{V,a}(E_{V,t}) \ d \, \mathfrak{R}^{n-m} a \ dt < \int_{0}^{\infty} \mu(E_{V,t}) \ dt. \end{split}$$

Finally we integrate over G(n, m), use Fubini's theorem, which is justified because the set of all $(x, V, t) \in \mathbb{R}^n \times G(n, m) \times \mathbb{R}^1$ for which $\int H(x, y) d\mu_{V,x} y \ge t$ is a Borel set, and apply Lemma 3.6 to obtain

$$\int I_{H}(\mu_{A}) d\lambda_{n,m} A \leq \int \int_{0}^{\infty} \mu(E_{V,t}) dt d\gamma_{n,m} V$$

$$= \int_{0}^{\infty} \int \mu(E_{V,t}) d\gamma_{n,m} V dt$$

$$= \int_{0}^{\infty} \int \gamma_{n,m} \left\{ V: \int H(x,y) d\mu_{V,x} y > t \right\} d\mu x dt$$

$$= \int \int_{0}^{\infty} \gamma_{n,m} \left\{ V: \int H(x,y) d\mu_{V,x} y > t \right\} dt d\mu x$$

$$= \int \int \int H(x,y) d\mu_{V,x} y d\gamma_{n,m} V d\mu x$$

$$\leq c \int \int K(x,y) d\mu y d\mu x = cI_{K}(\mu).$$

4.6. THEOREM. There is a constant c depending only on n and m such that for any compact set $F \subset \mathbb{R}^n$,

$$C_K(F) \leq c \int C_H(F \cap A) d\lambda_{n,m} A.$$

PROOF. The function $A \mapsto C_H(F \cap A)$ is upper semicontinuous on A(n, m). To see this suppose $C_H(F \cap A_0) < \alpha$, $A_0 \in A(n, m)$. Then there is an open set G such that $F \cap A_0 \subset G$ and $C_H(G) < \alpha$ (see [FB, Lemma 2.3.4]). Since F is compact there is a neighborhood U of A_0 in A(n, m) such that $F \cap A \subset G$ for $A \in U$. Hence $C_H(F \cap A) \leq C_H(G) < \alpha$ for $A \in U$.

We may assume $C_K(F)>0$. Let $\varepsilon>0$ and let μ be a Radon measure such that spt $\mu\subset F$, $\mu(F)=1$ and $I_K(\mu)\leqslant C_K(F)^{-1}+\varepsilon$. Since $I_K(\mu)<\infty$ (4.4) implies $\int |x-y|^{m-n}d\mu y<\infty$ for μ a.a. $x\in R^n$. Let R be the set of all $A\in A(n,m)$ for which $\mu_A(R^n)>0$. We define $\nu_A=\mu_A(R^n)^{-1}\mu_A$ for $A\in R$. Then spt $\nu_A\subset F\cap A$ and $\nu_a(F\cap A)=1$.

By Lemmas 3.5 and 3.4(4) we have

$$\int \mu_A(R^n) d\lambda_{n,m} A = \mu(R^n) = 1.$$

Since by Theorem 4.5, $I_H(\nu_A) = \mu_A(R^n)^{-2}I_H(\mu_A) < \infty$ for $\lambda_{n,m}$ a.a. $A \in R$, we get from Hölder's inequality and Theorem 4.5,

$$1 = \left(\int \mu_{A}(R^{n}) d\lambda_{n,m}A\right)^{2} = \left(\int_{R} \mu_{A}(R^{n})I_{H}(\nu_{A})^{1/2}I_{H}(\nu_{A})^{-1/2} d\lambda_{n,m}A\right)^{2}$$

$$\leq \left(\int_{R} \mu_{A}(R^{n})^{2}I_{H}(\nu_{A}) d\lambda_{n,m}A\right) \left(\int_{R} I_{H}(\nu_{A})^{-1} d\lambda_{n,m}A\right)$$

$$= \left(\int_{R} I_{H}(\mu_{A}) d\lambda_{n,m}A\right) \left(\int_{R} I_{H}(\nu_{A})^{-1} d\lambda_{n,m}A\right)$$

$$\leq cI_{K}(\mu) \int C_{H}(F \cap A) d\lambda_{n,m}A$$

$$\leq c\left(C_{K}(F)^{-1} + \varepsilon\right) \int C_{H}(F \cap A) d\lambda_{n,m}A.$$

Letting $\varepsilon \to 0$ we get the desired result.

- 4.7. Remark. It is clear that the inequality of Theorem 4.6 holds for arbitrary subsets of \mathbb{R}^n if the integral is replaced by the lower integral.
- 4.8. THEOREM. If $E \subset \mathbb{R}^n$ and $C_K(E) > 0$, then there is $B \subset E$ such that $C_K(E \sim B) = 0$ and for $x \in B$,

$$C_H(E \cap V_x) > 0$$
 for $\gamma_{n,m}$ a.a. $V \in G(n,m)$.

PROOF. Suppose this is false. Then there is a compact set $F \subset E$ such that $C_K(F) > 0$ and $\gamma_{n,m}\{V: C_H(E \cap V_x) = 0\} > 0$ for $x \in F$, and we can find a Radon measure μ such that spt $\mu \subset F$, $\mu(F) = 1$ and $I_K(\mu) < \infty$. By (4.4) and Lemmas 3.5 and 3.3(3), $\mu_{V,x}(R^n) > 0$ for $\mu \times \gamma_{n,m}$ a.a. $(x, V) \in R^n \times G(n, m)$. Since spt $\mu_{V,x} \subset F \cap V_x$ and $F \subset E$, we have $I_H(\mu_{V,x}) = \infty$ whenever $C_H(E \cap V_x) = 0$ and $\mu_{V,x}(R^n) > 0$. Therefore

$$\gamma_{n,m}$$
 $\{V: I_H(\mu_{V,x}) = \infty\} > 0 \text{ for } \mu \text{ a.a. } x \in F.$

Letting f be the characteristic function of the Borel set $\{(x, V): I_H(\mu_{V,x}) = \infty\}$ (cf. Lemma 4.2), we obtain from Fubini's theorem,

$$0 < \int \int f \, d\gamma_{n,m} \, d\mu = \int \int f \, d\mu \, d\gamma_{n,m} = \int \mu \big\{ x \colon I_H(\mu_{V,x}) = \infty \big\} \, d\gamma_{n,m} V.$$

Hence there is a set $G \subset G(n, m)$ such that $\gamma_{n,m}(G) > 0$ and $\mu\{x: I_H(\mu_{V,x}) = \infty\}$ > 0 for $V \in G$. Since $\pi_{V \#} \mu \ll \Re^{n-m} \sqcup V^{\perp}$ for $\gamma_{n,m}$ a.a. $V \in G(n, m)$, this gives

$$\mathfrak{R}^{n-m}\big\{a\in V^\perp\colon I_H(\mu_{V,a})=\infty\big\}>0\quad\text{for }\gamma_{n,m}\text{ a.a. }V\in G.$$

Integrating and using Theorem 4.5 we get a contradiction:

$$\infty = \int \int_{V^{\perp}} I_H(\mu_{V,a}) d \mathfrak{I}^{n-m} a d\gamma_{n,m} V \leq c I_K(\mu) < \infty.$$

In the case $K(x, y) = |x - y|^{m-n}$ we have the following

4.9. THEOREM. If $E \subset \mathbb{R}^n$ and $C_{n-m}(E) > 0$, then there is $B \subset E$ such that $C_{n-m}(E \sim B) = 0$, and for $x \in B$, $E \cap V_x$ is uncountable for $\gamma_{n,m}$ a.a. $V \in G(n,m)$.

PROOF. If this is false, there is a compact set $F \subset E$ such that $C_{n-m}(F) > 0$ and

$$\gamma_{n,m}\{V: E \cap V_x \text{ is at most countable}\} > 0 \text{ for } x \in F,$$
 (1)

and we can find a Radon measure μ such that spt $\mu \subset F$, $\mu(F) = 1$ and $I_K(\mu) < \infty$ where $K(x, y) = |x - y|^{m-n}$. We define for $0 < r < \infty$

$$H_r(x, y) = 1$$
, if $|x - y| < r$,

$$H_r(x, y) = 0$$
, if $|x - y| \ge r$,

$$H(x, y) = 1$$
, if $x = y$,

$$H(x, y) = 0$$
, if $x \neq y$,

$$K_r(x, y) = H_r(x, y)|x - y|^{m-n}$$
.

Then the functions H_r and K_r are lower semicontinuous and $H_r \downarrow H$ as $r \downarrow 0$. Whenever μ_A is defined, Lebesgue's bounded convergence theorem gives

$$\int \mu_{A}\{x\} \ d\mu_{A}x = \int \int H(x,y) \ d\mu_{A}y \ d\mu_{A}x = \lim_{t \downarrow 0} I_{H_{t}}(\mu_{A}),$$

and we obtain by Theorem 4.5 and Fatou's lemma

$$\begin{split} \int \int \, \mu_A \big\{ x \big\} \, \, d\mu_A \, x \, \, d\lambda_{n,m} A \, & \leq \, \liminf_{r \downarrow 0} \, \int \, I_{H_r} \big(\, \mu_A \big) \, \, d\lambda_{n,m} A \\ & \leq c \, \liminf_{r \downarrow 0} \, I_{K_r} \big(\, \mu \big) \, = \, 0 \end{split}$$

because $I_K(\mu) < \infty$. Hence for $\lambda_{n,m}$ a.a. $A \in A(n, m)$, $\int \mu_A\{x\} d\mu_A = 0$ which means $\mu_A\{x\} = 0$ for all $x \in R^n$. Since $\pi_{V\#} \mu \ll \mathfrak{R}^{n-m} \sqcup V^{\perp}$ for $\gamma_{n,m}$ a.a. $V \in G(n, m)$ by Lemma 3.5, it follows that for $\mu \times \gamma_{n,m}$ a.a. $(x, V) \in R^n \times G(n, m)$, $\mu_{V,x}\{y\} = 0$ for all $y \in R^n$. Using Lemma 3.3(3) we find for $\mu \times \gamma_{n,m}$ a.a. $(x, V) \in R^n \times G(n, m)$, $\mu_{V,x}(R^n) > 0$ and $\mu_{V,x}\{y\} = 0$ for $y \in R^n$, whence spt $\mu_{V,x}$ is uncountable. This contradicts spt $\mu_{V,x} \subset E \cap V_x$ and (1).

4.10. REMARKS. Suppose that s > n - m and E is \mathcal{X} measurable with $0 < \mathcal{X}(E) < \infty$. Then one can use Theorem 4.5 and the well-known relations between Hausdorff measure and capacity to prove $\dim(E \cap V_x) \ge s + m - n$ for $\mathcal{X} \times \gamma_{n,m}$ a.a. $(x, V) \in E \times G(n, m)$. This is Lemma 6.4 of [MP].

I do not know whether there are general results similar to 4.5-4.8 in the opposite direction. Ohtsuka has considered product sets in [O].

As a rather immediate consequence of [MP, Lemma 5.1] and Hölder's inequality we can give an inequality analogous to 4.6 for the Riesz capacities of the orthogonal projections. Here $O^*(n, m)$ is the space of all orthogonal projections $R^n \to R^m$ and $\theta_{n,m}^*$ is the orthogonally invariant measure on $O^*(n, m)$ of total mass one (see [F, 1.7.4 and 2.7.16]).

4.11. THEOREM. For 0 < s < m there is a constant c depending only on n, m and s such that for any compact set $F \subset \mathbb{R}^n$,

$$C_s(F) \leq c \int C_s(p(F)) d\theta_{n,m}^* p \leq c C_s(F).$$

PROOF. The right-hand inequality follows from $C_s(p(F)) \le C_s(F)$ (see [L, Theorem 2.9, p. 158]). To prove the left-hand inequality we may assume $C_s(F) > 0$. By [MP, 5.1],

$$\int C_s(p(F))^{-1} d\theta_{n,m}^* p \leqslant cC_s(F)^{-1}.$$

Hölder's inequality gives

$$1 = \int C_s(p(F))^{1/2} C_s(p(F))^{-1/2} d\theta_{n,m}^* p$$

$$\leq \left(\int C_s(p(F)) d\theta_{n,m}^* p \right)^{1/2} \left(\int C_s(p(F))^{-1} d\theta_{n,m}^* p \right)^{1/2},$$

whence

$$C_s(F) \leq c \bigg(\int C_s(p(F))^{-1} d\theta_{n,m}^* p\bigg)^{-1} \leq c \int C_s(p(F)) d\theta_{n,m}^* p.$$

- 4.12. REMARK. The method of [MP] does not seem to give a similar inequality for general kernels K. However, in some special cases it can be modified, for example if $K(x, y) = \sup\{-\log|x y|, 0\}$.
- 5. On the structure of purely unrectifiable sets. A set $E \subset R^n$ is m rectifiable if E = f(B) for some Lipschitzian map $f: B \to R^n$ where $B \subset R^m$ is bounded. E is called purely (\mathcal{H}^m, m) unrectifiable if it contains no m rectifiable subset of positive \mathcal{H}^m measure. If $\mathcal{H}^m(E) < \infty$ and E is purely (\mathcal{H}^m, m) unrectifiable, then according to one of the basic results of geometric measure theory [F, 3.3.15] $\mathcal{H}^m(p(E)) = 0$ for $\theta^*_{n,m}$ a.a. $p \in O^*(n, m)$. If E is a Borel set this means that the integralgeometric measure [F, 2.10.5] $\mathfrak{T}^m_1(E) = 0$.

In [M, §8] Marstrand considered radial projections of purely (\mathcal{K}^1 , 1) unrectifiable \mathcal{K}^1 measurable plane sets E for which $\mathcal{K}^1(E) < \infty$. He showed that if A is the set of all those points $a \in R^2$ from which the radial projection of E has positive linear measure, that is, $\gamma_{2,1}\{l: (E \sim \{a\}) \cap l_a \neq \emptyset\} > 0$, then dim $A \leq 1$. He also gave an example of a set E with dim A = 1. But it is not known whether $\mathcal{K}^1(A) = 0$ always or even $\mathcal{K}^1(A) < \infty$.

Here we generalize Marstrand's result to arbitrary dimensions, and we also give more precise information on the exceptional set. However, the above question remains unsolved.

The outer s-capacity of $E \subset \mathbb{R}^n$ is

$$C_s^*(E) = \inf\{C_s(G): E \subset G, G \text{ is open}\}.$$

For Suslin sets E, $C_s^*(E) = C_s(E)$ [L, Theorem 2.8, p 156]. If $C_s^*(E) = 0$, then dim $E \le s$ [L, Theorem 3.13, p. 196].

5.1. THEOREM. Let $E \subset \mathbb{R}^n$ with $\mathfrak{T}_1^m(E) = 0$ and let

$$A = \{ x \in \mathbb{R}^n : \gamma_{n,n-m} \{ V : E \cap V_x \neq \emptyset \} > 0 \}.$$

Then $C_m^*(A) = 0$, hence dim $A \leq m$, and A is purely (\mathcal{H}^m, m) unrectifiable.

PROOF. Since \mathfrak{I}_1^m is Borel regular [F, 2.10.1], we may assume that E is a Borel set. We first show that then the set A and

$$B = \{(x, V) \in \mathbb{R}^n \times G(n, n - m) : E \cap V_x \neq \emptyset\}$$

are Suslin sets. The map $(y, x, V) \mapsto \pi_V(x - y)$ of $\mathbb{R}^n \times \mathbb{R}^n \times G(n, n - m)$ into \mathbb{R}^n is continuous. Hence

$$C = E \times R^n \times G(n, n-m) \cap \{(y, x, V): \pi_V(x-y) = 0\}$$

is a Borel set. If $p: R^n \times R^n \times G(n, n-m) \to R^n \times G(n, n-m)$, p(y, x, V) = (x, V), is the projection, then B = p(C), and it follows from [F, 2.2.10] that B is a Suslin set. Then

$$A = \{x: \gamma_{n,n-m} \{ V: (x, V) \in B \} > 0 \}$$

is a Suslin set by [D, VI, 21].

For $F \subset A$ let

$$F_V = \{ x \in F : E \cap V_x \neq \emptyset \} \text{ for } V \in G(n, n-m).$$

Then $\pi_{\nu}(F_{\nu}) \subset \pi_{\nu}(E)$, and $\mathfrak{I}_{1}^{m}(E) = 0$ implies

$$\mathcal{H}^m(\pi_V(F_V)) = 0 \quad \text{for } \gamma_{n,n-m} \text{ a.a. } V \in G(n, n-m). \tag{1}$$

We shall show that the negation of either one of the assertions yields a Suslin set $F \subset A$ and a Radon measure μ such that

$$\mu(F) > 0$$
 and $\pi_{V\#} \mu \ll \mathcal{H}^m \sqcup V^\perp$ for $\gamma_{n,n-m}$ a.a. $V \in G(n, n-m)$. (2)

This leads to a contradiction. For (1) and (2) imply $\mu(F_V) = 0$ for $\gamma_{n,n-m}$ a.a. $V \in G(n, n-m)$, while Fubini's theorem gives

$$\int \mu(F_V) d\gamma_{n,n-m} V = \int_F \gamma_{n,n-m} \{ V : E \cap V_x \neq \emptyset \} d\mu x > 0.$$

Suppose first that $C_m^*(A) > 0$. Since A is a Suslin set also $C_m(A) > 0$. Hence there are a compact set $F \subset A$ and a Radon measure μ such that $\mu(F) > 0$ and $\int |x - y|^{-m} d\mu y < \infty$ for μ a.a. $x \in \mathbb{R}^n$. Then (2) follows from Lemma 3.5.

Suppose then that A is not purely (\mathfrak{R}^m, m) unrectifiable. Then A contains an m rectifiable subset B with $\mathfrak{R}^m(B) > 0$. By [F, 3.2.29] there is a C^1 submanifold M of R^n such that $\mathfrak{R}^m(B \cap M) > 0$. Set $F = A \cap M$. Then F is a Suslin set with $\mathfrak{R}^m(F) > 0$. Let $T_x \in G(n, m)$ be the tangent plane direction of M at $x \in M$ and let

$$J(V, x) = |\det(\pi_V | T_x)|$$

for $V \in G(n, n - m)$, $x \in M$. Then by [F, 3.2.20],

$$\int N(\pi_{V}|C,y) d\mathcal{H}^{m}y = \int_{C} J(V,x) d\mathcal{H}^{m}x$$
 (3)

for any \mathcal{H}^m measurable set $C \subset M$, where $N(\pi_V | C, y)$ is the number of points in the set $C \cap \pi_V^{-1}\{y\}$. Since J(V, x) = 0 if and only if $\dim(\pi_V(T_x)) < m$, we have for every $x \in M$, J(V, x) > 0 for $\gamma_{n,n-m}$ a.a. $V \in G(n, n-m)$. Hence by Fubini's theorem,

$$\int \mathcal{K}^m \{ x \in F : J(V, x) = 0 \} d\gamma_{n,n-m} V$$

$$= \int_F \gamma_{n,n-m} \{ V : J(V, x) = 0 \} d\mathcal{K}^m x = 0;$$

thus for $\gamma_{n,n-m}$ a.a. $V \in G(n, n-m)$, $\mathcal{K}^m\{x \in F: J(V, x) = 0\} = 0$. For every such V(3) implies $\mathcal{H}^m(\pi_V(C)) > 0$ whenever $C \subset F$ with $\mathcal{H}^m(C) > 0$. This means that F and $\mu = \mathcal{H}^m \cup F$ satisfy (2).

REFERENCES

- [A] F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc., vol. 4, no. 165, 1976.
- [D] C. Dellacherie, Ensembles analytiques, capacités, mesures de Hausdorff, Springer-Verlag, Berlin and New York, 1972.
 - [F] H. Federer, Geometric measure theory, Springer-Verlag, Berlin and New York, 1969.
 - [FB] B. Fuglede, On the theory of potentials in locally compact spaces, Acta Math. 103 (1960), 139-215.
 - [K] R. Kaufman, On Hausdorff dimension of projections, Mathematika 15 (1968), 153-155.

- [L] N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin and New York, 1972.
- [M] J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc. (3) 4 (1954), 257-302.
- [MP] P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. AI 1 (1975), 227-244.
 - [O] M. Ohtsuka, Capacité des ensembles produits, Nagoya Math. J. 12 (1957), 95-130.

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HELSINKI, HELSINKI, FINLAND (CUrrent address)